CHARACTERISTIC BEHAVIOR WHEN SURFACE HEAT
PULSE ACTS ON METAL

A. G. Goloveiko UDC 537.52:536.3

The powerful thermal effect exerted on a metal by a heat pulse is considered as a function of
the pulse introduction time, for fixed surface density.

A powerful thermal action on metal will excite vigorous surface evaporation, with rapid motion of the
evaporation front into the metal. When a moving coordinate system associated with the evaporation front
is employed, a satisfactory approximation to the process occurring under such conditions is given by the
following formulation of the problem {1]:
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Computer solution of this essentially nonlinear problem has shown that the process splits into two
stages: transient and steady-state [1, 2]. In the steady mode, the process is governed by the following
equations [1]:
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y=T, /T, v=yeip(—y); A=r, —c,Tyy B =¢,T,. 4

The duration of the transient stage lies within the estimate [2]
o = a/0* = (a/v}) exp 2y, ()
while the increase in evaporation-front velocity during the transient can be approximated satisfactorily as
v{t) = verf (2¢/1,), (6)
which yields the steady velocity value when t = ¢,

If the heat pulse is specified by the restricted surface density

W = Ft, (7)
then when W = const we find a very unique relationship between the path traversed by the evaporation front,
4
Yoy = , v () df (8)
0
and the melting isotherm,
Xm= Xév + Xm 9)
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. and the time at which the pulse was introduced. The machine-solu-
m 4 tion data [1] have been used to represent this relationship in general
form (Fig. 1); we have shown several of the most characteristic
points 1,11, 2, 2', 3, 3', 4, and 5. Knowing their coordinates, we
can satisfactorily construct the entire figure for any specified value
of W. Each of these points corresponds to quite definite thermal-~
effect modes, which we shall henceforth treat as being the most
characteristic. Let us look at these points separately.

Point 1. For a very high front velocity, the problem (1) be-~
comes approximate [3], so that it is desirable to restrict v, to some
value substantially less than the speed of sound, such as v, = 10‘1v0,
which corresponds to

7 Fy=1,(Aln10 + B)/In 10 exp (In 10); 7,y = 10%q/o2, (10)
Fig. 1. General view of the rela- ‘

tionship between the motion of the
evaporation front (Xgy) and the melt-
ting isotherm (x;,) and time at which t, = W/F, =In10exp (In 10) W/, (A1n 10 + B) (11)
the pulse was introduced into the
melting metal for a specified re-
stricted surface density energy.
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For values of W that lie within the range of practical interest, 10%-
10? J/m?, the time for which the pulse acts,

considerably exceeds the transient time ty, which makes it possible
to determine the path '

Xl oy = thf; =In10exp (In 10) W/10 (A 1n 10 + B) (12)
traversed by the front without regard to the duration of the transient. In such a case, the coordinates of
point 1 are uniquely determined by (11) and (12).

Point 1'. For this point, it is sufficient to determine the depression in the melting isotherm with re-
spect to the front on the basis of the steady-mode conditions (3):

_10a, (T,/n10)—T,
T —To ’

0

X (13)
since F{ and t; have the same values as for point 1, i.e., F; = Fy and t; =t;. Thus one of the coordinates of
1' is found from the expression

x;m = xiev + Xm (14)

in accordance with (12), (13), while the other is found from (11).

Point 2. If for W = const, the time for which the pulse acts increases from {y to t,, this entails a re-
duction in F, v, and T from the values Fy, v;, and T, to the values F,, v,, and T,. In addition, the duration
of the transient rises from ty to ty. Let t,>ty, i.e., assume that the process has entered the steady phase.
In this case, in accordance with (6) and (8), we can write

toz 123
%o gy = | vyerf (2/ty,) di+ | vy, (15)
. ,

fos
where it is no longer possible to neglect the duration of the transient. Calculation of the first term yields

0.875vytp; then from (15) we have
%5 gy = O (f— 0125 ). 1)

Now since v, = vexp (=y,), tep = a/vi = a/vjexp 2y,, and in accordance with (2), (7)
ty=W/F, = Wuv, (Ay, + B)Y»€Xp Yy,
we can write (16) as
"2 ev = [Wy,/(Ay, + B)] —CB exp y,,

where C is determined by the constants of the metal

C = 0.125a/vye, T, (19
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Computational Results for Certain Metals, W
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It follows from (18) that the path traversed by the front depends on
¥y = Ty /Ty, and for a certain value of ¥, X, gy will reach a maximum.
Maximizing (18), we find

C(Ay,+ B)expy, = W. (20)

Thus the coordinates of Point 2 are determined by (17) and (18), where y,
must first be computed from the transcendental equation (20).

Point 2'. From this point, we need only determine the dip in the
melting isotherm with respect to the front, using the steady-mode condi-
tions (3),

aexpyy . T — Tots
Yo (Tm~—Tyy. '’

(21)

Xom =

where y, is also first found from the transcendental equation (20). As a
consequence, one of the coordinates of 2' is determined by the expression

Kopy = Xogy + Xy (22)
in accordance with (18), (21), and the second from (17).

Point 4. This point is observed when conditions are such that
evaporation can be neglected. In this case, the problem (1) becomes a
simpler, linear problem:

T (x, 1) *T(x, t)
o~ ° dx* ’
aT(;, D _ o _g%t_) — (ac, ", (23)
0<x<‘\:oo; 0<t<tn; T(x, 0)=T,,
which has the familiar solution
T(x, t)=T,+ (2F) t/c, Vv a) ierfc (x/2V af), (24)

where ierfcu is a tabulated function [4].

For the given point, at time t =¢,,x = Xgms T&yms b)) = Ty, F = Fy
=W/ty; then from (24) we have

ierfe (x,, /2y af,) = cy (T, —Ty) Vai,/2w. (25)
For a given W, we can calculate x4y, from (25) as a time function, xp,
=Xym(t). We use the maximum value of this function to find the desired

values Xy ty, and ¥,. The appropriate calculations show that the maxi-
mum occurs when

Sm  _gag @ Tm=T) v a _ o0 (26)
2V, 2w
and thus we can find the coordinate of Point 4:
fy = 0.2W*¥ac2 (T ,, — To¥, (27)
Xy = 0:4 Wic, (T, — T)- (28)

Point 3. The given point does not lie on the time axis t, but only
approaches it asymptotically as t increases. This occasions a certain
indeterminacy in the choice of a criterion for estimating its position. It
is reasonable to require that x3o,, < Xj;ay and, in addition, that the time ty
corresponding to this point forms but a negligible part of the transient
duration ty;. On the basis of these conditions, as calculations show, tg
approaches ty, and thus it is best to take t; =t, and Fy = F,, which is
equivalent to combining Point 3' with Point 4, and Point 3 with the projec~
tion of Point 4 on the time axis.
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The steady mode is naturally not reached when t; = t,, but in accordance with the data for this mode
(y3 = Tm/Ts), we can write

Fy=v,(Ay; + B)/y;exp (29)
in accordance with (3). On the other hand, in accordance with (7) and (27), we can write
F, = Wt,= 5ac% (T ,— T R/W. (30)
Since we have taken F; = F,, it follows from (29) and (30) that
(Dys exp y)/(Ays + B) =W, (31)
where D is determined by the constants of the metal,
D = 5ac2(Tyy, — To)/v, (32)
From the data for y,, calculated from (31), we can determine the transient duration,
fog = a/V% = (aexp 2y,) /02, (33)
following which the steady mode can set in for a heat flux F3 = F,. We can now also estimate the fraction of
this duration that is represented by t;,

A tll 0.2 [?OW exp (—_ y3);‘4 . (34)
acy (Tl'ﬂ—To)

As the calculations show, for various metals, @ amounts to about 1072 or less. In such case, we can write

. 8.1072 v )3 v
= f(2t/t,q) df = - 0 . 35
Xzev bs Ug€r ( / 03) VJ'L ( aexpy; v (Tm_ _ TO) ( )

Thus Xzey < Xjey, and in addition, Xjgy < X4y, Which corresponds to the criterion for determination of the
coordinates of the given point.

Point 5. This point corresponds to the time t; at which, for a given W, the melting point T(0, t;)
= Ty, is reached at the surface of the metal. Letting x = 0 and t = t; in (24), we find the coordinate of the
given point,
t, = 4W2[nac? (T — T, (36)

In none of these calculations have we allowed for the heat of fusion Ly;. If we do, then Eq. (3), which
expresses conservation of energy for the steady mode, will take the more general form

F=olr, +L, +¢c, (T—T,). (37)

Since Ly < ry, allowance for it will not noticeably change the values computed above for Points 1, 2, and 3.
The dip in the melting isotherm, i.e., the positions of Points 11, 21, 4, and 5, can be affected noticeably when
we take Ly into account, Rigorous investigation of this problem requires formulation and solution of the
Stefan problem; we can, however, consider only approximate estimates for the positions of these points,
using the reduced melting point

Tm = Tm + Ly loy (38)

in the calculations. There is such a way of allowing for the heat of fusion [5], and although it is not terribly
accurate, the computed results represent better the actual process than when the heats of fusion are ne-
glected. Thus the positions of 1', 2!, 4, and 5 should be found from the reduced melting point, which can be
done by replacing Ty, by TE, in (13), (21), (27), (28), (31), (35), and (36).

The evaporating atoms, leaving the evaporation front at high speeds, exert a strong effect, which en-
tails the appearance of considerable reactive pressure, whose values can be found from the following ex-
pression [6]:

P = P, [exp(—)/V yl, (39)
where

P, = 2yNIv VY 2me/A* y =, (40}
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Fig.2. Reactivepressure (P,bar),dis-
placements of evaporation front (xév, DR
and melting isotherms (x,, 1) as func-
tions of the time (t, sec) at which a heat
pulseis introduced into ametal (copper)
for a fixed surface density W =1 J/mm?,

We need only consider the reactive pressure for the
characteristic points discussed above, i.e., at time t;, {5, t3 = t,,
and t;, when y = Ty, /T(0, t) takes on the respective values

Yy = T,IT, = In 10, (41)
Ys=ti = Tl T (0, £)) = Tpu/{ Ty + 12(T,, — To)/ VO, 2n}, (42)
Ys = To/T (O, t;) = Tm/Tm, (43)

while y, = Ty, /T, is found from (20). Here y, and y, corre-
spond to the steady-mode conditions, when y; and y; correspond
to the final instant of introduction of the given pulse W for the
nonsteady, transient stage of the process. This is important

by virtue of the fact that in the steady phase, the pressures P,
and P, act throughout almost the entire pulse, while for the non-
steady phase, P, and P; appear only at the end of the pulse.

Table 1 shows the computed results for the basic quan~-
tities at the characteristic points for certain metals. Figure 2
graphically illustrates the relationship between these quantities
and the time for which the.given impulse acts, in the case of
copper.

As we see from Fig, 2, in the steady phase of the process,
as the pulse introduction time increases, i.e., as we go from

Point1 to Point 2, the amount of liguid phase rises (x,, increases from 0.54 to 62.1 y) while the reactive
pressure drops sharply (from 8.65- 104 to 1.07-10% bar). At Point 3, it has dropped to about 1 bar (~1 atm);
it then drops to values that are of no practical importance. It is clear from the graph that the reactive
pressure can become a very important factor in the evacuation of liguid metal, but only in the short-pulse
region. As the pulse duration increases, there is an increase in the amount of liquid phase, and this is ac-

companied by a loss of reactive pressure.

NOTATION
ey is the specific bulk heat capacity;
ry is the specific bulk heat of evaporation;
vy is the speed of sound in metal;
Ly is the specific bulk heat of fusion;
a is the thermal diffusivity;
m, v are the mass and vibration frequency of the atoms of the metal, respectively;
N is the Avogadro number and atomic weight;
£ is the energy of the atomic bond;

Tm is the characteristic temperature for the given metal, found from the condition kTy, =¢&;
k is the Boltzmann constant;
is the density of the metal;
t is the time for which the heat pulse acts;
F ig the density of the heat flux acting at the evaporation front,
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